Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.225
Filtrar
1.
Environ Int ; 187: 108722, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38733765

RESUMO

Chinese children are exposed to broad environmental risks ranging from well-known hazards, such as pesticides and heavy metals, to emerging threats including many new man-made chemicals. Although anecdotal evidence suggests that the exposure levels in Chinese children are substantially higher than those of children in developed countries, a systematic assessment is lacking. Further, while these exposures have been linked to a variety of childhood diseases, such as respiratory, endocrine, neurological, behavioral, and malignant disorders, the magnitude of the associations is often unclear. This review provides a current epidemiologic overview of commonly reported environmental contaminants and their potential impact on children's health in China. We found that despite a large volume of studies on various topics, there is a need for more high-quality research and better-coordinated regional and national data collection. Moreover, prevention of such diseases will depend not only on training of environmental health professionals and enhanced research programs, but also on public education, legislation, and networking.

2.
Food Chem ; 452: 139542, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38728898

RESUMO

This study investigated the effects of ethanol, 1,2-propanediol, and glycerol on the structure and aggregation behavior of silver carp (Hypophthalmichthys molitrix) myosin. All alcohols induced extensive alteration in the tertiary structure of myosin. Both ethanol and 1,2-propanediol further promoted an increase in the content of ß-sheets in myosin and induced myosin aggregation. While glycerol had almost no impact on the secondary structure of myosin. Molecular dynamics simulations revealed that increasing the concentration of ethanol and 1,2-propanediol affected the overall structural changes in the myosin heavy chain (MHC), while glycerol exerted a more pronounced effect on the MHC tail when compared to the MHC head. Disruption of the hydration layers induced by ethanol and 1,2-propanediol contributed to local structural changes in myosin. Glycerol at a concentration of 20% induced the formation of a larger hydration layer around the MHC tail, which facilitated the stabilization of the protein structure.

3.
Sci Total Environ ; : 172985, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38705299

RESUMO

BACKGROUND: Prenatal exposure to environmental phenols such as bisphenol (BPs), paraben (PBs), benzophenone (BzPs), and triclosan (TCS) is ubiquitous and occurs in mixtures. Although some of them have been suspected to impact child behavioral development, evidence is still insufficient, and their mixed effects remain unclear. OBJECTIVES: To explore the association of prenatal exposure to multiple phenols with child behavioral problems. METHOD: In a sample of 600 mother-child pairs from the Shanghai Birth Cohort, we quantified 18 phenols (6 PBs, 7 BPs, 4 BzPs, and TCS) in urine samples collected during early pregnancy. Parent-reported Strengths and Difficulties Questionnaires were utilized to evaluate child behavioral difficulties across four subscales, namely conduct, hyperactivity/inattention, emotion, and peer relationship problems, at 4 years of age. Multivariable linear regression was conducted to estimate the relationships between single phenolic compounds and behavioral problems. Additionally, weighted quantile sum (WQS) regression was employed to examine the overall effects of the phenol mixture. Sex-stratified analyses were also performed. RESULTS: Our population was extensively exposed to 10 phenols (direction rates >50 %), with low median concentrations (1.00 × 10-3-6.89 ng/mL). Among them, single chemical analyses revealed that 2,4-dihydroxy benzophenone (BP1), TCS, and methyl 4-hydroxybenzoate (MeP) were associated with increased behavior problems, including hyperactivity/inattention (BP1: ß = 0.16; 95 % confidence interval [CI]: 0.04, 0.30), emotional problems (BP1: ß = 0.11; 95 % CI: 0.02, 0.20; TCS: ß = 0.08; 95 % CI: 0.02, 0.14), and peer problems (MeP: ß = 0.10; 95 % CI: 0.02, 0.18); however, we did not identify any significant association with conduct problems. Further phenol mixture analyses in the WQS model yielded similar results. Stratification for child sex showed stronger positive associations in boys. CONCLUSION: Our findings indicated that maternal phenol levels during early pregnancy, specifically BP1, TCS, and MeP, are associated with high behavioral problem scores in 4-year-old children.

4.
J Colloid Interface Sci ; 669: 43-52, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703581

RESUMO

Utilizing the thermodynamically favorable urea oxidation reaction instead of the anodic oxygen precipitation reaction is an alternative pathway for the energy-saving hydrogen production. Therefore, it is significant to explore advanced electrocatalysts for both HER and UOR. In this work, a dendritic heteroarchitectures of 2D CoMoO4 nanosheets deposited on 1D CoP nanoneedles (CoP/CoMoO4-CC) was fabricated as bifunctional electrocatalyst. 1D CoP nanostructure with fast charge transport pathways and 2D CoMoO4 nanostructure with large specific surface area and short paths for electron/mass transport. The unique morphology endows the superhydrophilic and superaerophobic properties, allowing for the rapid contact with the reactants and rapid removal of surface-generated gases. As a result, the CoP/CoMoO4-CC shows efficient bifunctional activity. This work offers a new avenue to rationally design bifunctional electrocatalysts for large-scale practical hydrogen production.

5.
J Hazard Mater ; 472: 134477, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38703682

RESUMO

Interfacial challenges in unconventional oil extraction include heavy oil-water-solid multiphase separation and corrosion inhibition. Herein, a novel strategy based on interfacial hydrogen bonding reconstruction is proposed for constructing multifunctional interfacially active materials (MIAMs) to address multi-interfacial separation needs. A simple one-pot method is applied to successfully synthesize four different MIAM varieties, integrating site groups (-NH2, OSO, -COOH, and Si-O-Si) with multiple hydrogen bonds (HBs) into allyl polyether chains. The results indicate that all synthesized MIAMs excel in demulsification, detergency, and corrosion inhibition simultaneously, even at 25 °C. Their dehydration efficiency for different water-in-oil emulsions (even heavy oil emulsion) surpasses 99.9 % even at 16 °C, showing their excellent energy-saving potential for field applications. Furthermore, they demonstrate effective, nondestructive static cleaning (up to 86 %) of adhered oil from solid surfaces at 25 °C and provide corrosion inhibition effects (up to 92.09 %) on mild steel immersed in saturated brine. Mechanistic tests reveal that incorporating multiple HB sites in MIAMs dramatically enhances their effectiveness in interfacial separations. Based on these findings, an HB-dominated noncovalent interaction reconstruction strategy is tentatively proposed to develop advanced materials for low-carbon, efficient interfacial separations.

6.
Anal Methods ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738547

RESUMO

The quantification of microalgae cells is crucial for the treatment of ships' ballast water. However, achieving rapid detection of microalgae cells remains a substantial challenge. Here, we develop a new method for rapid and effective detection of microalgae concentration by utilizing upconversion nanoprobes (UCNPs) of NaYF4:Er3+,Tm3+. Three ligands, carboxylated methoxypolyethylene glycols with 5000 and 2000 molecular weights (mPEG-COOH-5, mPEG-COOH-2) and D-gluconic acid sodium salt (DGAS), were used to convert hydrophobic UCNPs into a hydrophilic state through modification. The results show that the mPEG-COOH-5 modified UCNPs present the highest stability in an aqueous solution. Fourier Transform Infrared Spectroscopy (FTIR) measurements reveal the presence of a significant number of -COOH functional groups on UCNPs after the mPEG-COOH-5 modification. These -COOH groups enhance the hydrophilicity and biocompatibility of UCNPs. The soluble UCNPs were directly mixed with microalgae, and the upconversion luminescence (UCL) spectra of the UCNPs were recorded immediately after thorough shaking. This greatly reduces the measurement time and could realize rapid onboard detection. In this sensing procedure, the UCNPs with red UCL functioned as energy donors, while microalgae with red absorption served as an energy acceptor. The UCL gradually diminishes with an increase in microalgae concentration based on the inner filter effect, thus establishing a relationship between UCL and microalgae concentration. The accuracy of the detection is further validated through the traditional microscope counting method. These findings pave the way for a novel rapid strategy to assess microalgae concentration using UCNPs.

7.
Zhongguo Zhong Yao Za Zhi ; 49(3): 770-778, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621881

RESUMO

This paper aims to study the therapeutic effect of Massa Medicata Fermentata on hyperlipidemia model rats and investigate its mechanism of hypolipidemic effect with the help of non-targeted metabolomics. The mixed hyperlipidemia model rats were constructed by giving high-fat chow. After successful modeling, the rats were divided into the model group, pravastatin sodium group(4.4 mg·kg~(-1)), lipotropic group(0.1 g·kg~(-1)), high-dose group(2.4 g·kg~(-1)), medium-dose group(1.2 g·kg~(-1)), and low-dose group(0.6 g·kg~(-1)) of Massa Medicata Fermentata, and they were administered for four weeks once daily. An equal volume of ultrapure water was given to the blank group and model group. Serum lipid level and liver hematoxylin-eosin(HE) staining were used as indicators to estimate the intervention effect of Massa Medicata Fermentata on mixed hyperlipidemia, and the changes in metabolites in plasma of mixed hyperlipidemia model rats were analyzed by non-targeted metabolomics. The mechanism of the hypolipidemic effect of Massa Medicata Fermentata was analyzed through metabolite pathway enrichment. The results showed that compared with the model group, the Massa Medicata Fermentata administration group, especially the high-dose group, could significantly reduce the content of total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c)(P<0.05 or P<0.01), and liver HE staining revealed that the number of adipocytes in the high-dose group was reduced to some extent. The potential biomarkers obtained by non-targeted metabolomics screening included glycerol 3-phosphate, sphingomyelin, sphingosine 1-phosphate, and deoxyuridine, which were mainly involved in the sphingolipid metabolism process, glycerophospholipid metabolism process, glycerol ester metabolism pathway, and pyrimidine metabolism pathway, totaling four possible metabolic pathways related to lipid metabolism. This study provides a reference for an in-depth investigation of the hypolipidemic mechanism of Massa Medicata Fermentata, which is of great significance for further promoting the clinical application of Massa Medicata Fermentata and increasing the indications.


Assuntos
Medicamentos de Ervas Chinesas , Hiperlipidemias , Ratos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Fígado , Hiperlipidemias/tratamento farmacológico , Metabolômica , Colesterol , Dieta Hiperlipídica/efeitos adversos
8.
Alzheimers Dement ; 20(5): 3406-3415, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38567735

RESUMO

INTRODUCTION: Aducanumab selectively targets aggregated forms of amyloid beta (Aß), a neuropathological hallmark of Alzheimer's disease (AD). METHODS: PRIME was a Phase 1b, double-blind, randomized clinical trial of aducanumab. During the 12-month placebo-controlled period, participants with prodromal AD or mild AD dementia were randomized to receive aducanumab or placebo. At week 56, participants could enroll in a long-term extension (LTE), in which all participants received aducanumab. The primary endpoint was safety and tolerability. RESULTS: Amyloid-related imaging abnormalities-edema (ARIA-E) were the most common adverse event. Dose titration was associated with a decrease in the incidence of ARIA-E. Over 48 months, aducanumab decreased brain amyloid levels in a dose- and time-dependent manner. Exploratory endpoints suggested a continued benefit in the reduction of clinical decline over 48 months. DISCUSSION: The safety profile of aducanumab remained unchanged in the LTE of PRIME. Amyloid plaque levels continued to decrease in participants treated with aducanumab. HIGHLIGHTS: PRIME was a Phase 1b, double-blind, randomized clinical trial of aducanumab. We report cumulative safety and 48-month efficacy results from PRIME. Amyloid-related imaging abnormalities-edema (ARIA-E) were the most common adverse event (AE); 61% of participants with ARIA-E were asymptomatic. Dose titration was associated with a decrease in the incidence of ARIA-E. Aducanumab decreased levels of amyloid beta (Aß) in a dose- and time-dependent manner.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Anticorpos Monoclonais Humanizados , Humanos , Método Duplo-Cego , Anticorpos Monoclonais Humanizados/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Masculino , Feminino , Idoso , Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Resultado do Tratamento , Placa Amiloide/tratamento farmacológico , Relação Dose-Resposta a Droga
9.
World J Gastrointest Oncol ; 16(4): 1256-1267, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660647

RESUMO

BACKGROUND: One of the primary reasons for the dismal survival rates in pancreatic ductal adenocarcinoma (PDAC) is that most patients are usually diagnosed at late stages. There is an urgent unmet clinical need to identify and develop diagnostic methods that could precisely detect PDAC at its earliest stages. AIM: To evaluate the potential value of radiomics analysis in the differentiation of early-stage PDAC from late-stage PDAC. METHODS: A total of 71 patients with pathologically proved PDAC based on surgical resection who underwent contrast-enhanced computed tomography (CT) within 30 d prior to surgery were included in the study. Tumor staging was performed in accordance with the 8th edition of the American Joint Committee on Cancer staging system. Radiomics features were extracted from the region of interest (ROI) for each patient using Analysis Kit software. The most important and predictive radiomics features were selected using Mann-Whitney U test, univariate logistic regression analysis, and minimum redundancy maximum relevance (MRMR) method. Random forest (RF) method was used to construct the radiomics model, and 10-times leave group out cross-validation (LGOCV) method was used to validate the robustness and reproducibility of the model. RESULTS: A total of 792 radiomics features (396 from late arterial phase and 396 from portal venous phase) were extracted from the ROI for each patient using Analysis Kit software. Nine most important and predictive features were selected using Mann-Whitney U test, univariate logistic regression analysis, and MRMR method. RF method was used to construct the radiomics model with the nine most predictive radiomics features, which showed a high discriminative ability with 97.7% accuracy, 97.6% sensitivity, 97.8% specificity, 98.4% positive predictive value, and 96.8% negative predictive value. The radiomics model was proved to be robust and reproducible using 10-times LGOCV method with an average area under the curve of 0.75 by the average performance of the 10 newly built models. CONCLUSION: The radiomics model based on CT could serve as a promising non-invasive method in differential diagnosis between early and late stage PDAC.

10.
Heliyon ; 10(7): e29013, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601573

RESUMO

After surgical or natural menopause, women face a high risk of nonalcoholic fatty liver disease (NAFLD), which can be diminished by hormone replacement therapy (HRT). The gut microbiota is subject to modulation by various physiological changes and the progression of diseases. This microbial ecosystem coexists symbiotically with the host, playing pivotal roles in immune maturation, microbial defense mechanisms, and metabolic functions essential for nutritional and hormone homeostasis. E2 supplementation effectively prevented the development of NAFLD after bilateral oophorectomy (OVX) in female rats. The changes in the gut microbiota such as abnormal biosynthetic metabolism of fatty acids caused by OVX were partially restored by E2 supplementation. The combination of liver transcriptomics and metabolomics analysis revealed that linoleic acid (LA) metabolism, a pivotal pathway in fatty acids metabolism was mainly manipulated during the induction and treatment of NAFLD. Further correlation analysis indicated that the gut microbes were associated with abnormal serum indicators and different LA metabolites. These metabolites are also closely related to serum indicators of NAFLD. An in vitro study verified that LA is an inducer of hepatic steatosis. The changes in transcription in the LA metabolism pathway could be normalized by E2 treatment. The metabolic perturbations of LA may directly and secondhand impact the development of NAFLD in postmenopausal individuals. This research focused on the sex-specific pathophysiology and treatment of NAFLD, providing more evidence for HRT and calling for the multitiered management of NAFLD.

11.
World J Gastrointest Oncol ; 16(3): 991-1005, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38577443

RESUMO

BACKGROUND: The precise role of mitochondrial carrier homolog 2 (MTCH2) in promoting malignancy in gastric mucosal cells and its involvement in gastric cancer cell metastasis have not been fully elucidated. AIM: To determine the role of MTCH2 in gastric cancer. METHODS: We collected 65 samples of poorly differentiated gastric cancer tissue and adjacent tissues, constructed MTCH2-overexpressing and MTCH2-knockdown cell models, and evaluated the proliferation, migration, and invasion of human gastric epithelial cells (GES-1) and human gastric cancer cells (AGS) cells. The mitochondrial membrane potential (MMP), mitochondrial permeability transformation pore (mPTP) and ATP fluorescence probe were used to detect mitochondrial function. Mitochondrial function and ATP synthase protein levels were detected via Western blotting. RESULTS: The expression of MTCH2 and ATP2A2 in gastric cancer tissues was significantly greater than that in adjacent tissues. Overexpression of MTCH2 promoted colony formation, invasion, migration, MMP expression and ATP production in GES-1 and AGS cells while upregulating ATP2A2 expression and inhibiting cell apoptosis; knockdown of MTCH2 had the opposite effect, promoting overactivation of the mPTP and promoting apoptosis. CONCLUSION: MTCH2 can increase the malignant phenotype of GES-1 cells and promote the proliferation, invasion, and migration of gastric cancer cells by regulating mitochondrial function, providing a basis for targeted therapy for gastric cancer cells.

12.
Front Bioeng Biotechnol ; 12: 1337808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681963

RESUMO

Introduction: Magnetic Resonance Imaging (MRI) is essential in diagnosing cervical spondylosis, providing detailed visualization of osseous and soft tissue structures in the cervical spine. However, manual measurements hinder the assessment of cervical spine sagittal balance, leading to time-consuming and error-prone processes. This study presents the Pyramid DBSCAN Simple Linear Iterative Cluster (PDB-SLIC), an automated segmentation algorithm for vertebral bodies in T2-weighted MR images, aiming to streamline sagittal balance assessment for spinal surgeons. Method: PDB-SLIC combines the SLIC superpixel segmentation algorithm with DBSCAN clustering and underwent rigorous testing using an extensive dataset of T2-weighted mid-sagittal MR images from 4,258 patients across ten hospitals in China. The efficacy of PDB-SLIC was compared against other algorithms and networks in terms of superpixel segmentation quality and vertebral body segmentation accuracy. Validation included a comparative analysis of manual and automated measurements of cervical sagittal parameters and scrutiny of PDB-SLIC's measurement stability across diverse hospital settings and MR scanning machines. Result: PDB-SLIC outperforms other algorithms in vertebral body segmentation quality, with high accuracy, recall, and Jaccard index. Minimal error deviation was observed compared to manual measurements, with correlation coefficients exceeding 95%. PDB-SLIC demonstrated commendable performance in processing cervical spine T2-weighted MR images from various hospital settings, MRI machines, and patient demographics. Discussion: The PDB-SLIC algorithm emerges as an accurate, objective, and efficient tool for evaluating cervical spine sagittal balance, providing valuable assistance to spinal surgeons in preoperative assessment, surgical strategy formulation, and prognostic inference. Additionally, it facilitates comprehensive measurement of sagittal balance parameters across diverse patient cohorts, contributing to the establishment of normative standards for cervical spine MR imaging.

13.
Cell Death Dis ; 15(4): 299, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678018

RESUMO

Mitochondria are the centers of energy and material metabolism, and they also serve as the storage and dispatch hubs of metal ions. Damage to mitochondrial structure and function can cause abnormal levels and distribution of metal ions, leading to cell dysfunction and even death. For a long time, mitochondrial quality control pathways such as mitochondrial dynamics and mitophagy have been considered to inhibit metal-induced cell death. However, with the discovery of new metal-dependent cell death including ferroptosis and cuproptosis, increasing evidence shows that there is a complex relationship between mitochondrial quality control and metal-dependent cell death. This article reviews the latest research results and mechanisms of crosstalk between mitochondrial quality control and metal-dependent cell death in recent years, as well as their involvement in neurodegenerative diseases, tumors and other diseases, in order to provide new ideas for the research and treatment of related diseases.


Assuntos
Morte Celular , Metais , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Metais/metabolismo , Animais , Mitofagia , Ferroptose , Dinâmica Mitocondrial , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
14.
Heliyon ; 10(7): e28864, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596036

RESUMO

Objectives: The main objective of this study was to identify the key predictors and construct a nomogram that can be used to predict the overall survival of individuals with non-endometrioid endometrial cancer. Methods: A total of 2686 non-endometrioid endometrial cancer patients confirmed between 1988 and 2018 were selected from the Surveillance, Epidemiology, and End Results database. They were divided into a training cohort and an internal validation cohort. Independent risk factors were chosen by Cox regression analyses. A predictive nomogram model for overall survival was constructed based on above factors. A Chinese cohort of 41 patients was collected to be an external validation cohort. Results: Eight variables were estimated as independent predictors for overall survival. A nomogram was established using these factors. The C-index for predicting the overall survival of patients with non-endometrioid endometrial cancer from the nomogram was 0.734, 0.700, and 0.767 in training, internal, and external validation cohort, respectively. Calibration plots and decision curve analysis showed that the nomogram was valuable for further clinical application. Conclusion: We constructed a nomogram which can be used as an effective tool to predict the 3- and 5-year overall survival of Non-endometrioid endometrial cancer patients.

15.
Carbohydr Res ; 539: 109120, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669825

RESUMO

Xanthoceras sorbifolium Bunge, also known as Tu-Mu-Gua and Wen-Dan-Ge-Zi, has several applications. Clinical data and experimental studies have shown anti-tumor, anti-inflammatory, anti-bacterial, and anti-oxidant properties of Xanthoceras sorbifolium Bunge that inhibits prostate hyperplasia, lowers blood pressure and lipid level, and treats enuresis and urinary incontinence. It also has neuroprotective effects and can treat Alzheimer's disease and Parkinson's syndrome. The research on the chemical composition and pharmacological effects of Xanthoceras sorbifolium Bunge has been increasing. Triterpenoid and triterpenoid saponins are the main constituents in Xanthoceras sorbifolium Bunge and exhibit biological activities. In this review, we summarized the research progress on triterpenoids and their glycosides in Xanthoceras sorbifolia, including the chemical constituents, pharmacological activities, and biogenic pathways of triterpenoid mother nucleus. The results would provide a reference for further research and development of triterpenoids and their glycosides in Xanthoceras sorbifolia.


Assuntos
Saponinas , Triterpenos , Saponinas/química , Saponinas/farmacologia , Saponinas/isolamento & purificação , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , Humanos , Sapindaceae/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação
16.
ACS Appl Mater Interfaces ; 16(17): 21943-21952, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635833

RESUMO

Lithium-sulfur (Li-S) batteries are one of the most promising high-energy density secondary batteries due to their high theoretical energy density of 2600 Wh kg-1. However, the sluggish kinetics and severe "shuttle effect" of polysulfides are the well-known barriers that hinder their practical applications. A carefully designed catalytic host of sulfur may be an effective strategy that not only accelerates the conversion of polysulfides but also limit their dissolution to mitigate the "shuttle effect." Herein, in situ surface-phosphided Ni0.96Co0.03Mn0.01O (p-NCMO) oxide microspheres are prepared via gas-phase phosphidation as a catalytic host of sulfur. The as-prepared unique heterostructured microspheres, with enriched surface-coated metal phosphide, exhibit superior synergistic effect of catalytic conversion and absorption of the otherwise soluble intermediate polysulfides. Correspondingly, the sulfur cathode exhibits excellent electrochemical performance, including a high initial discharge capacity (1162 mAh gs-1 at 0.1C), long cycling stability (491 mAh gs-1 after 1000 cycles at 1C), and excellent rate performance (565 mAh gs-1 at 5C). Importantly, the newly prepared sulfur cathode shows a high areal capacity of 4.0 mAh cm-2 and long cycle stability under harsh conditions (high sulfur loading of 5.3 mg cm-2 and lean electrolyte/sulfur ratio of 5.8 µL mg-1). This work proposes an effective strategy to develop the catalytic hosts of sulfur for achieving high-performance Li-S batteries via surface phosphidation.

18.
Autophagy ; : 1-23, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38513669

RESUMO

PLD1 has been implicated in cytoskeletal reorganization and vesicle trafficking in somatic cells; however, its function remains unclear in oocyte meiosis. Herein, we found PLD1 stably expresses in mouse oocytes meiosis, with direct interaction with spindle, RAB11A+ vesicles and macroautophagic/autophagic vacuoles. The genetic or chemical inhibition of PLD1 disturbed MTOC clustering, spindle assembly and its cortical migration, also decreased PtdIns(4,5)P2, phosphorylated CFL1 (p-CFL1 [Ser3]) and ACTR2, and their local distribution on MTOC, spindle and vesicles. Furthermore in PLD1-suppressed oocytes, vesicle size was significantly reduced while F-actin density was dramatically increased in the cytoplasm, the asymmetric distribution of autophagic vacuoles was broken and the whole autophagic process was substantially enhanced, as illustrated with characteristic changes in autophagosomes, autolysosome formation and levels of ATG5, BECN1, LC3-II, SQSTM1 and UB. Exogenous administration of PtdIns(4,5)P2 or overexpression of CFL1 hyperphosphorylation mutant (CFL1S3E) could significantly improve polar MTOC focusing and spindle structure in PLD1-depleted oocytes, whereas overexpression of ACTR2 could rescue not only MTOC clustering, and spindle assembly but also its asymmetric positioning. Interestingly, autophagy activation induced similar defects in spindle structure and positioning; instead, its inhibition alleviated the alterations in PLD1-depleted oocytes, and this was highly attributed to the restored levels of PtdIns(4,5)P2, ACTR2 and p-CFL1 (Ser3). Together, PLD1 promotes spindle assembly and migration in oocyte meiosis, by maintaining rational levels of ACTR2, PtdIns(4,5)P2 and p-CFL1 (Ser3) in a manner of modulating autophagy flux. This study for the first time introduces a unique perspective on autophagic activity and function in oocyte meiotic development.Abbreviations: ACTR2/ARP2: actin related protein 2; ACTR3/ARP3: actin related protein 3; ATG5: autophagy related 5; Baf-A1: bafilomycin A1; BFA: brefeldin A; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GOLGA2/GM130: golgin A2; GV: germinal vesicle; GVBD: germinal vesicle breakdown; IVM: in vitro maturation; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MI: metaphase of meiosis I; MII: metaphase of meiosis II; MO: morpholino; MTOC: microtubule-organizing center; MTOR: mechanistic target of rapamycin kinase; PB1: first polar body; PLA: proximity ligation assay; PLD1: phospholipase D1; PtdIns(4,5)P2/PIP2: phosphatidylinositol 4,5-bisphosphate; RAB11A: RAB11A, member RAS oncogene family; RPS6KB1/S6K1: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TUBA/α-tubulin: tubulin alpha; TUBG/γ-tubulin: tubulin gamma; UB: ubiquitin; WASL/N-WASP: WASP like actin nucleation promoting factor.

19.
Shock ; 61(3): 375-381, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517267

RESUMO

ABSTRACT: Background. Identifying the causative pathogens of central nervous system infections (CNSIs) is crucial, but the low detection rate of traditional culture methods in cerebrospinal fluid (CSF) has made the pathogenic diagnosis of CNSIs a longstanding challenge. Patients with CNSIs after neurosurgery often overlap with inflammatory and bleeding. Metagenomic next-generation sequencing (mNGS) has shown some benefits in pathogen detection. This study aimed to investigate the diagnostic performance of mNGS in the etiological diagnosis of CNSIs in patients after neurosurgery. Methods. In this prospective observational study, we enrolled patients with suspected CNSIs after neurosurgical operations who were admitted to the intensive care unit of Beijing Tiantan Hospital. All enrolled patients' CSF was tested using mNGS and pathogen culture. According to comprehensive clinical diagnosis, the enrolled patients were divided into CNSIs group and non-CNSIs group to compare the diagnostic efficiency of mNGS and pathogen culture. Results. From December 2021 to March 2023, 139 patients were enrolled while 66 in CNSIs group and 73 in non-CNSIs. The mNGS exceeded culture in the variety and quantity of pathogens detected. The mNGS outperformed traditional pathogen culture in terms of positive percent agreement (63.63%), accuracy (82.01%), and negative predictive value (75.00%), with statistically significant differences ( P < 0.05) for traditional pathogen culture. The mNGS also detected bacterial spectrum and antimicrobial resistance genes. Conclusions. Metagenomics has the potential to assist in the diagnosis of patients with CNSIs who have a negative culture.


Assuntos
Infecções do Sistema Nervoso Central , Cuidados Críticos , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Unidades de Terapia Intensiva , Infecções do Sistema Nervoso Central/diagnóstico , Hospitalização , Sensibilidade e Especificidade
20.
J Cell Mol Med ; 28(7): e18174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494839

RESUMO

This study investigates genetic mutations and immune cell dynamics in stomach adenocarcinoma (STAD), focusing on identifying prognostic markers and therapeutic targets. Analysis of TCGA-STAD samples revealed C > A as the most common single nucleotide variant (SNV) in both high and low-risk groups. Key mutated driver genes included TTN, TP53 and MUC16, with frame-shift mutations more prevalent in the low-risk group and missense mutations in the high-risk group. Interaction analysis of hub genes such as C1QA and CD68 showed significant correlations, impacting immune cell infiltration patterns. Using ssGSEA, we found higher immune cell infiltration (B cells, CD4+ T cells, CD8+ T cells, DC cells, NK cells) in the high-risk group, correlated with increased risk scores. xCell algorithm results indicated distinct immune infiltration levels between the groups. The study's risk scoring model proved effective in prognosis prediction and immunotherapy efficacy assessment. Key molecules like CD28, CD27 and SLAMF7 correlated significantly with risk scores, suggesting potential targets for high-risk STAD patients. Drug sensitivity analysis showed a negative correlation between risk scores and sensitivity to certain treatments, indicating potential therapeutic options for high-risk STAD patients. We also validated the carcinogenic role of RPL14 in gastric cancer through phenotypic experiments, demonstrating its influence on cancer cell proliferation, invasion and migration. Overall, this research provides crucial insights into the genetic and immune aspects of STAD, highlighting the importance of a risk scoring model for personalized treatment strategies and clinical decision-making in gastric cancer management.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Linfócitos T CD8-Positivos , Imunoterapia , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA